vignettes/HighPerformanceBenchmarks.Rmd
HighPerformanceBenchmarks.Rmd
This document serves as an overview for measuring the performance of
RcppAlgos
against other tools for generating combinations,
permutations, and partitions. This stackoverflow post: How to generate
permutations or combinations of object in R? has some benchmarks.
You will note that the examples in that post are relatively small. The
benchmarks below will focus on larger examples where performance really
matters and for this reason we only consider the packages arrangements,
partitions,
and RcppAlgos.
For the benchmarks below, we used a
2022 Macbook Air Apple M2 24 GB
machine.
library(RcppAlgos)
library(partitions)
library(arrangements)
#>
#> Attaching package: 'arrangements'
#> The following object is masked from 'package:partitions':
#>
#> compositions
library(microbenchmark)
options(digits = 4)
options(width = 90)
pertinent_output <- capture.output(sessionInfo())
cat(paste(pertinent_output[1:3], collapse = "\n"))
#> R version 4.3.1 (2023-06-16)
#> Platform: aarch64-apple-darwin20 (64-bit)
#> Running under: macOS Ventura 13.4.1
pkgs <- c("RcppAlgos", "arrangements", "partitions", "microbenchmark")
sapply(pkgs, packageVersion, simplify = FALSE)
#> $RcppAlgos
#> [1] '2.8.3'
#>
#> $arrangements
#> [1] '1.1.9'
#>
#> $partitions
#> [1] '1.10.7'
#>
#> $microbenchmark
#> [1] '1.4.10'
numThreads <- min(as.integer(RcppAlgos::stdThreadMax() / 2), 6)
numThreads
#> [1] 4
set.seed(13)
v1 <- sort(sample(100, 30))
m <- 21
t1 <- comboGeneral(v1, m, Parallel = T)
t2 <- combinations(v1, m)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 14307150 21
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = comboGeneral(v1, m, nThreads = numThreads),
cbRcppAlgosSer = comboGeneral(v1, m),
cbArrangements = combinations(v1, m),
times = 15, unit = "relative")
#> Warning in microbenchmark(cbRcppAlgosPar = comboGeneral(v1, m, nThreads = numThreads), :
#> less accurate nanosecond times to avoid potential integer overflows
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 15 a
#> cbRcppAlgosSer 3.495 3.040 3.040 2.996 2.997 2.905 15 b
#> cbArrangements 3.520 3.068 3.065 3.028 3.019 2.934 15 b
v2 <- v1[1:10]
m <- 20
t1 <- comboGeneral(v2, m, repetition = TRUE, nThreads = numThreads)
t2 <- combinations(v2, m, replace = TRUE)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 10015005 20
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = comboGeneral(v2, m, TRUE, nThreads = numThreads),
cbRcppAlgosSer = comboGeneral(v2, m, TRUE),
cbArrangements = combinations(v2, m, replace = TRUE),
times = 15, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 15 a
#> cbRcppAlgosSer 2.840 2.944 2.983 2.934 2.929 3.727 15 b
#> cbArrangements 2.952 2.927 2.905 2.919 2.908 2.761 15 b
myFreqs <- c(2, 4, 4, 5, 3, 2, 2, 2, 3, 4, 1, 4, 2, 5)
v3 <- as.integer(c(1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610))
t1 <- comboGeneral(v3, 20, freqs = myFreqs, nThreads = numThreads)
t2 <- combinations(freq = myFreqs, k = 20, x = v3)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 14594082 20
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = comboGeneral(v3, 20, freqs = myFreqs, nThreads = numThreads),
cbRcppAlgosSer = comboGeneral(v3, 20, freqs = myFreqs),
cbArrangements = combinations(freq = myFreqs, k = 20, x = v3),
times = 10, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 10 a
#> cbRcppAlgosSer 3.086 3.078 3.036 3.051 2.999 2.958 10 b
#> cbArrangements 5.661 5.782 5.683 5.735 5.618 5.522 10 c
v4 <- as.integer(c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59))
t1 <- permuteGeneral(v4, 6, nThreads = numThreads)
t2 <- permutations(v4, 6)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 8910720 6
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = permuteGeneral(v4, 6, nThreads = numThreads),
cbRcppAlgosSer = permuteGeneral(v4, 6),
cbArrangements = permutations(v4, 6),
times = 15, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 15 a
#> cbRcppAlgosSer 1.489 1.498 1.392 1.463 1.179 1.322 15 b
#> cbArrangements 2.521 2.521 2.311 2.469 2.127 1.984 15 c
## Indexing permutation example with the partitions package
t1 <- permuteGeneral(11, nThreads = 4)
t2 <- permutations(11)
t3 <- perms(11)
dim(t1)
#> [1] 39916800 11
stopifnot(identical(t1, t2), identical(t1, t(as.matrix(t3))))
rm(t1, t2, t3)
invisible(gc())
microbenchmark(cbRcppAlgosPar = permuteGeneral(11, nThreads = 4),
cbRcppAlgosSer = permuteGeneral(11),
cbArrangements = permutations(11),
cbPartitions = perms(11),
times = 5, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 5 a
#> cbRcppAlgosSer 2.456 2.466 2.175 2.421 1.793 1.975 5 b
#> cbArrangements 4.003 4.008 3.651 4.088 3.169 3.316 5 c
#> cbPartitions 7.857 7.936 7.062 8.019 5.915 6.338 5 d
v5 <- v3[1:5]
t1 <- permuteGeneral(v5, 10, repetition = TRUE, nThreads = numThreads)
t2 <- permutations(v5, 10, replace = TRUE)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 9765625 10
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = permuteGeneral(v5, 10, TRUE, nThreads = numThreads),
cbRcppAlgosSer = permuteGeneral(v5, 10, TRUE),
cbArrangements = permutations(x = v5, k = 10, replace = TRUE),
times = 10, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 10 a
#> cbRcppAlgosSer 2.958 2.842 2.946 2.825 2.781 3.835 10 b
#> cbArrangements 3.591 3.478 3.590 3.447 3.391 4.590 10 c
v6 <- sort(runif(12))
t1 <- permuteGeneral(v6, 7, freqs = rep(1:3, 4), nThreads = numThreads)
t2 <- permutations(freq = rep(1:3, 4), k = 7, x = v6)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 19520760 7
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = permuteGeneral(v6, 7, freqs = rep(1:3, 4), nThreads = numThreads),
cbRcppAlgosSer = permuteGeneral(v6, 7, freqs = rep(1:3, 4)),
cbArrangements = permutations(freq = rep(1:3, 4), k = 7, x = v6),
times = 10, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 10 a
#> cbRcppAlgosSer 3.214 3.312 3.065 3.285 3.251 1.954 10 b
#> cbArrangements 3.635 3.636 3.374 3.609 3.572 2.131 10 c
t1 <- comboGeneral(0:140, freqs=c(140, rep(1, 140)),
constraintFun = "sum", comparisonFun = "==",
limitConstraints = 140)
t2 <- partitions(140, distinct = TRUE)
t3 <- diffparts(140)
# Each package has different output formats... we only examine dimensions
# and that each result is a partition of 140
stopifnot(identical(dim(t1), dim(t2)), identical(dim(t1), dim(t(t3))),
all(rowSums(t1) == 140), all(rowSums(t2) == 140),
all(colSums(t3) == 140))
dim(t1)
#> [1] 9617150 16
rm(t1, t2, t3)
invisible(gc())
microbenchmark(cbRcppAlgosPar = partitionsGeneral(0:140, freqs=c(140, rep(1, 140)), nThreads = numThreads),
cbRcppAlgosSer = partitionsGeneral(0:140, freqs=c(140, rep(1, 140))),
cbArrangements = partitions(140, distinct = TRUE),
cbPartitions = diffparts(140),
times = 10, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 10 a
#> cbRcppAlgosSer 3.320 3.252 3.036 3.510 2.670 2.539 10 b
#> cbArrangements 2.638 2.592 2.361 2.566 2.152 1.974 10 c
#> cbPartitions 17.403 17.723 16.021 18.527 14.143 13.119 10 d
t1 <- comboGeneral(160, 10,
constraintFun = "sum", comparisonFun = "==",
limitConstraints = 160)
t2 <- partitions(160, 10, distinct = TRUE)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 8942920 10
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = partitionsGeneral(160, 10, nThreads = numThreads),
cbRcppAlgosSer = partitionsGeneral(160, 10),
cbArrangements = partitions(160, 10, distinct = TRUE),
times = 10, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 10 a
#> cbRcppAlgosSer 3.439 3.433 3.007 3.332 2.235 2.564 10 b
#> cbArrangements 4.509 4.519 3.834 4.379 2.919 2.928 10 c
t1 <- comboGeneral(0:65, repetition = TRUE, constraintFun = "sum",
comparisonFun = "==", limitConstraints = 65)
t2 <- partitions(65)
t3 <- parts(65)
# Each package has different output formats... we only examine dimensions
# and that each result is a partition of 65
stopifnot(identical(dim(t1), dim(t2)), identical(dim(t1), dim(t(t3))),
all(rowSums(t1) == 65), all(rowSums(t2) == 65),
all(colSums(t3) == 65))
dim(t1)
#> [1] 2012558 65
rm(t1, t2, t3)
invisible(gc())
microbenchmark(cbRcppAlgosPar = partitionsGeneral(0:65, repetition = TRUE,
nThreads = numThreads),
cbRcppAlgosSer = partitionsGeneral(0:65, repetition = TRUE),
cbArrangements = partitions(65),
cbPartitions = parts(65),
times = 20, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.0000 20 a
#> cbRcppAlgosSer 2.902 2.644 2.376 2.624 2.571 0.8792 20 b
#> cbArrangements 2.310 2.030 1.916 1.999 1.974 1.2587 20 b
#> cbPartitions 8.951 8.916 9.342 11.188 10.938 3.7147 20 c
t1 <- comboGeneral(100, 15, TRUE, constraintFun = "sum",
comparisonFun = "==", limitConstraints = 100)
t2 <- partitions(100, 15)
stopifnot(identical(t1, t2))
dim(t1)
#> [1] 9921212 15
rm(t1, t2)
# This takes a really long time... not because of restrictedparts,
# but because apply is not that fast. This transformation is
# needed for proper comparisons. As a result, we will compare
# a smaller example
# t3 <- t(apply(as.matrix(restrictedparts(100, 15, include.zero = F)), 2, sort))
t3 <- t(apply(as.matrix(restrictedparts(50, 15, include.zero = F)), 2, sort))
stopifnot(identical(partitions(50, 15), t3))
rm(t3)
invisible(gc())
microbenchmark(cbRcppAlgosPar = partitionsGeneral(100, 15, TRUE,
nThreads = numThreads),
cbRcppAlgosSer = partitionsGeneral(100, 15, TRUE),
cbArrangements = partitions(100, 15),
cbPartitions = restrictedparts(100, 15,
include.zero = FALSE),
times = 10, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.00 1.000 1.000 10 a
#> cbRcppAlgosSer 3.439 3.445 2.586 2.74 2.802 1.290 10 b
#> cbArrangements 4.210 4.210 3.126 3.35 3.266 1.534 10 c
#> cbPartitions 15.238 15.460 11.480 12.26 11.754 6.212 10 d
Currenlty, RcppAlgos
is the only package capable of
efficiently generating partitions of multisets. Therefore, we will only
time RcppAlgos
and use this as a reference for future
improvements.
t1 <- comboGeneral(120, 10, freqs=rep(1:8, 15),
constraintFun = "sum", comparisonFun = "==",
limitConstraints = 120)
dim(t1)
#> [1] 7340225 10
stopifnot(all(rowSums(t1) == 120))
microbenchmark(cbRcppAlgos = partitionsGeneral(120, 10, freqs=rep(1:8, 15)),
times = 10)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> cbRcppAlgos 273.9 275.5 279.1 276.4 283.6 286.8 10
t1 <- compositionsGeneral(0:15, repetition = TRUE)
t2 <- arrangements::compositions(15)
t3 <- partitions::compositions(15)
# Each package has different output formats... we only examine dimensions
# and that each result is a partition of 15
stopifnot(identical(dim(t1), dim(t2)), identical(dim(t1), dim(t(t3))),
all(rowSums(t1) == 15), all(rowSums(t2) == 15),
all(colSums(t3) == 15))
dim(t1)
#> [1] 16384 15
rm(t1, t2, t3)
invisible(gc())
microbenchmark(cbRcppAlgosSer = compositionsGeneral(0:15, repetition = TRUE),
cbArrangements = arrangements::compositions(15),
cbPartitions = partitions::compositions(15),
times = 20, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosSer 1.000 1.000 1.000 1.000 1.00 1.000 20 a
#> cbArrangements 1.201 1.178 1.189 1.175 1.19 1.195 20 a
#> cbPartitions 129.521 148.587 169.709 173.088 190.08 207.932 20 b
For the next two examples, we will exclude the
partitions
package for efficiency reasons.
t1 <- compositionsGeneral(0:23, repetition = TRUE)
t2 <- arrangements::compositions(23)
# Each package has different output formats... we only examine dimensions
# and that each result is a partition of 23
stopifnot(identical(dim(t1), dim(t2)), all(rowSums(t1) == 23),
all(rowSums(t2) == 23))
dim(t1)
#> [1] 4194304 23
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = compositionsGeneral(0:23, repetition = TRUE,
nThreads = numThreads),
cbRcppAlgosSer = compositionsGeneral(0:23, repetition = TRUE),
cbArrangements = arrangements::compositions(23),
times = 20, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 20 a
#> cbRcppAlgosSer 3.388 3.397 3.419 3.445 3.404 3.439 20 b
#> cbArrangements 3.741 3.786 3.822 3.835 3.829 3.869 20 c
t1 <- compositionsGeneral(30, 10, repetition = TRUE)
t2 <- arrangements::compositions(30, 10)
stopifnot(identical(t1, t2), all(rowSums(t1) == 30))
dim(t1)
#> [1] 10015005 10
rm(t1, t2)
invisible(gc())
microbenchmark(cbRcppAlgosPar = compositionsGeneral(30, 10, repetition = TRUE,
nThreads = numThreads),
cbRcppAlgosSer = compositionsGeneral(30, 10, repetition = TRUE),
cbArrangements = arrangements::compositions(30, 10),
times = 20, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgosPar 1.000 1.000 1.000 1.000 1.000 1.000 20 a
#> cbRcppAlgosSer 3.057 3.088 3.167 3.083 3.032 4.699 20 b
#> cbArrangements 3.165 3.131 3.154 3.143 3.196 3.085 20 b
We will show one example from each category to demonstrate the
efficiency of the iterators in RcppAlgos
. The results are
similar for the rest of the cases not shown.
pkg_arrangements <- function(n, total) {
a <- icombinations(n, as.integer(n / 2))
for (i in 1:total) a$getnext()
}
pkg_RcppAlgos <- function(n, total) {
a <- comboIter(n, as.integer(n / 2))
for (i in 1:total) a@nextIter()
}
total <- comboCount(18, 9)
total
#> [1] 48620
microbenchmark(cbRcppAlgos = pkg_RcppAlgos(18, total),
cbArrangements = pkg_arrangements(18, total),
times = 15, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgos 1.00 1.00 1.00 1.00 1.0 1.00 15 a
#> cbArrangements 19.29 19.19 18.54 19.08 18.8 14.04 15 b
pkg_arrangements <- function(n, total) {
a <- ipermutations(n)
for (i in 1:total) a$getnext()
}
pkg_RcppAlgos <- function(n, total) {
a <- permuteIter(n)
for (i in 1:total) a@nextIter()
}
total <- permuteCount(8)
total
#> [1] 40320
microbenchmark(cbRcppAlgos = pkg_RcppAlgos(8, total),
cbArrangements = pkg_arrangements(8, total),
times = 15, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgos 1.00 1.00 1.00 1.00 1.00 1.00 15 a
#> cbArrangements 19.14 18.88 18.24 17.93 18.21 17.09 15 b
pkg_partitions <- function(n, total) {
a <- firstpart(n)
for (i in 1:(total - 1)) a <- nextpart(a)
}
pkg_arrangements <- function(n, total) {
a <- ipartitions(n)
for (i in 1:total) a$getnext()
}
pkg_RcppAlgos <- function(n, total) {
a <- partitionsIter(0:n, repetition = TRUE)
for (i in 1:total) a@nextIter()
}
total <- partitionsCount(0:40, repetition = TRUE)
total
#> [1] 37338
microbenchmark(cbRcppAlgos = pkg_RcppAlgos(40, total),
cbArrangements = pkg_arrangements(40, total),
cbPartitions = pkg_partitions(40, total),
times = 15, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgos 1.00 1.00 1.00 1.00 1.00 1.00 15 a
#> cbArrangements 15.50 15.53 15.28 15.53 15.68 13.35 15 b
#> cbPartitions 25.28 25.30 25.00 25.50 24.79 23.28 15 c
pkg_partitions <- function(n, total) {
a <- firstcomposition(n)
for (i in 1:(total - 1)) a <- nextcomposition(a, FALSE)
}
pkg_arrangements <- function(n, total) {
a <- icompositions(n)
for (i in 1:total) a$getnext()
}
pkg_RcppAlgos <- function(n, total) {
a <- compositionsIter(0:n, repetition = TRUE)
for (i in 1:total) a@nextIter()
}
total <- compositionsCount(0:15, repetition = TRUE)
total
#> [1] 16384
microbenchmark(cbRcppAlgos = pkg_RcppAlgos(15, total),
cbArrangements = pkg_arrangements(15, total),
cbPartitions = pkg_partitions(15, total),
times = 15, unit = "relative")
#> Unit: relative
#> expr min lq mean median uq max neval cld
#> cbRcppAlgos 1.00 1.00 1.00 1.00 1.00 1.00 15 a
#> cbArrangements 13.87 13.69 13.47 13.53 13.23 13.00 15 b
#> cbPartitions 45.04 44.26 43.93 43.14 43.83 47.16 15 c